
Johns Random Precourse stuff

John



Outline

Basic Commandline

Git

Debugging



What is the terminal?



Introduction to the Command Line

▶ Your computer is basically a machine that executes
commands, you just have graphics to help visualize it

▶ You type everything, because thats how people did it back
then.

▶ Sometimes called: shell, terminal, console (technically
different, but you can ignore for now).

▶ To open it, open terminal in macos, or command prompt in
windows.



Basics: Navigating Directories

▶ Basically file manager but no mouse.

▶ This is might not work on windows because blame microsoft.

▶ cd to change directories.

▶ pwd to display the current directory.

▶ ls to list files and directories.

$ cd Documents

$ pwd

/Users/yourname/Documents

$ ls

File1.txt File2.txt Dir1



Creating and Deleting

▶ note you can potentially remove all your files on the command
line.

▶ great if you want to screw yourself over.

▶ mkdir to create a new directory.

▶ touch to create a new file.

▶ rm to remove a file.

▶ rmdir to remove an empty directory.

$ mkdir NewDir

$ touch NewFile.txt

$ rm NewFile.txt

$ rmdir NewDir



Viewing and Editing Files

▶ Basacily the equivalent of opening it in notepad.

▶ cat to display the contents of a file.

▶ nano, vi, or vim to edit files directly from the command line.

$ cat File1.txt

This is the content of File1.txt

$ nano File1.txt



But do I really need this?

▶ It is how you run python

▶ As a beginner, you can mostly get by by clicking the green
button

▶ Sometimes green button no work, so its good to know how to
do it from the command line

▶ Make sure you do not develop command line phobia.



Running Python Scripts

▶ Navigate to the directory containing your Python script using
cd.

▶ Run a Python script with the python command followed by
the script name.

$ cd path_to_your_script

$ python your_script.py



Using the Python Interpreter

▶ Very useful for playing around with concepts

▶ You can start the Python interpreter by simply typing python

in the command line.

▶ You can execute Python commands directly in the interpreter.

$ python

>>> print("Hello, World!")

Hello, World!

>>> exit()



random tips

▶ Use python --version to check the installed Python
version.

▶ Use pip to install Python packages: pip install

package name.



No I want to only click on green run button no terminal

▶ OK, well you have to use it when you ssh



What is ssh

▶ allows you to steal someone’s computing power

▶ great if your own computer is a toaster

▶ but no gui, only shell

▶ its like someone gave you the keys to their car so you do not
have to ride your tricycle.



How to ssh

▶ everyone gets access to their own virtual machine on the server

▶ ssh username@somethingsomething

▶ in theory you could use it to mine bitcoin



Demo if we have time



Outline

Basic Commandline

Git

Debugging



What is Git?



What is Git (for real)?

▶ Git is a distributed version control system that tracks
changes in any set of computer files, usually used for
coordinating work among programmers who are collabo-
ratively developing source code during software develop-
ment. Its goals include speed, data integrity, and support
for distributed, non-linear workflows (thousands of parallel
branches running on different computers).

▶ Basically google docs for code.

▶ A command line program (but GUIs exist).

▶ It’s how you download code off of github.



github

▶ git hub is the website, git is the actual program you use

▶ You can use a different source hosting site, but most just use
github

▶ You can have a personal repo with your modifications by
making a fork, which is done on github

▶ Github also has a bunch of random social media features too

▶ follow me on github btw



But why can’t I just use google drive?



Why use Git?

▶ Keeps a history of all changes.

▶ Branching and merging capabilities. (meaning two people can
work on different parts of the code base at the same time)

▶ Distributed, meaning everyone that uses git has a copy of the
source code, so you don’t need internet to work on it.

▶ See who wrote what, and blame them for their bugs.

▶ If you don’t use git you will get bullied.



Basic Git Commands

▶ git init Only need to do this once when making a new
repo. If you download from github, you use git clone

▶ git add add to “staging”.

▶ git commit - Saves changes to the repository, with a small
message saying what you did.

▶ git push - Uploads changes to a remote repository.

▶ git status See what you’ve added so far

▶ Lots of other commands, but we will only go over these.



Workflow

▶ Do some work

▶ Save in your editor

▶ Git add your changes, (sometimes you don’t want to add all
your changes)

▶ Git commit, and give a message

▶ Git pull to see if anyone else made any changes. If there are
changes you need to merge them.

▶ git push to see it on github.

▶ Repeat



But that’s too hard

▶ Download a gui

▶ github desktop, gitkraken,

▶ vscode also has git integration

▶ Alternatively, edit directly on github (not recommended)



Faq

▶ Push didn’t work! - Pull first

▶ Pull didn’t work! - Commit first

▶ I committed but I still can’t pull - You probably forgot to add
before you commit

▶ I have a merge conflict! - Try not to panic, open the files, fix
the errors, add and commit.

▶ I did commit, but now I’m in a weird editor - It’s probably
vim, type i to actually begin editing.

▶ How to exit vim? - esc :wq



Basically



Interactive Example (if extra time)

Real life github



Outline

Basic Commandline

Git

Debugging



What is a bug?

▶ Basically, you are doing something wrong

▶ It’s a lot easier writing wrong code than correct code.



Types of Errors

▶ Compile Errors

▶ Runtime Errors

▶ Logic Errors



Compile Errors

▶ Basically, you made a grammar mistake

▶ Examples: Missing semicolons, undeclared variables,
mismatched brackets, typos

▶ Usually there will be a red squiggly line

▶ Relatively easy to fix, usually you copied something wrong.



Runtime Errors

▶ Occur while the program is running.

▶ Examples: Dividing by zero, trying to access an out-of-bounds
array index, the famous null pointer exception

▶ Usually your program crashes.

▶ There is usually a line number to see where it failed



.10/site-packages/perlin_noise/perlin_noise.py", line

50, in __call__↪→

return self.noise(coordinates)

File

"/nix/store/9zhyl4byxp5g895i07r8mdd0k15akcv4-python3-3.10.12-env/lib/python3.10/site-packages/perlin_noise/perlin_noise.py",

line 78, in noise

↪→

↪→

return sum([

File

"/nix/store/9zhyl4byxp5g895i07r8mdd0k15akcv4-python3-3.10.12-env/lib/python3.10/site-packages/perlin_noise/perlin_noise.py",

line 80, in <listcomp>

↪→

↪→

get_weighted_val(coordinates)

File

"/nix/store/9zhyl4byxp5g895i07r8mdd0k15akcv4-python3-3.10.12-env/lib/python3.10/site-packages/perlin_noise/rand_vec.py",

line 62, in get_weighted_val

↪→

↪→

return self.weight_to(coordinates) * dot(

File

"/nix/store/9zhyl4byxp5g895i07r8mdd0k15akcv4-python3-3.10.12-env/lib/python3.10/site-packages/perlin_noise/rand_vec.py",

line 36, in weight_to

↪→

↪→

def weight_to(self, coordinates: List[float]) ->

float:↪→

KeyboardInterrupt



Logic Errors

▶ The code runs, but doesnt do what you want it to do

▶ Examples: Incorrect formulas, missing steps in a process.

▶ Often the hardest to detect because there are no explicit error
messages.



Debugging Techniques

▶ Adding Print Statements

▶ Using Paper and Pencil

▶ Duck Debugging



Adding Print Statements

▶ Adding lines of code to display variables or messages.

▶ Allows you to see which code is being run, which code is not.

▶ Relatively simple, you learn hello world on the first day and
that’s all you need.



Using Paper and Pencil

▶ Write down variables and their values as you trace through
the code.

▶ Allows for manual simulation of how the code runs.

▶ Sometimes writing stuff down just makes everything make
sense



Duck Debugging

▶ Explain your code or problem out loud, as if to a rubber duck
or inanimate object.

▶ Sounds really stupid, but sometimes works

▶ if you do this in public, you may get bullied



Other useful tips

▶ Google is your best friend

▶ Stackoverflow can also be helpful (they can also be mean)

▶ Maybe chatgpt (make sure you understand the code yourself)



Interactive example (if we have time)

▶ Examples: Making a sandwich

▶ Examples: Adding two numbers

▶ Examples: Doing laundry


	Basic Commandline
	Git
	Debugging

